

NASA Goddard Space Flight Center
Information, Science & Technology Colloquium
6 May 2015

NASA Cyclone Global Navigation Satellite System (CYGNSS) Earth Venture Mission

Chris Ruf

Professor of Atmospheric Science and Electrical Engineering
NASA CYGNSS Principal Investigator

Space Physics Research Labortatory, University of Michigan

CYGNSS Science Motivation

• Tropical cyclone track forecasts have improved in accuracy by ~50% since 1990, largely as a result of improved mesoscale and synoptic modeling and data assimilation. In that same period, there has been essentially no improvement in the accuracy of intensity forecasts.

National Hurricane Center, http://www.nhc.noaa.gov/verification/verify5.shtml

CYGNSS Objectives and Mission Design

CYGNSS Objectives

- Measure ocean surface wind speed in all precipitating conditions, including those experienced in the tropical cyclone (TC) eyewall
- Measure ocean surface wind speed in the TC inner core with sufficient frequency to resolve genesis and rapid intensification

CYGNSS Mission Design

 Eight satellites in low earth orbit at 35° inclination, each carrying a four-channel modified GPS receiver capable of bi-static radar measurements of GPS signals reflected by the ocean surface

Geometry of a GNSS-R Measurement of the Delay Doppler Map (DDM)

Spaceborne Empirical Demonstration of Ocean Wind Speed Retrievals by GNSS-R

DDMs measured by GNSS-R instrument (early version of CYGNSS science payload) deployed on UK-DMC-1 mission (launch 2003) with co-located NDBC buoys for wind speed ground truth

Software-based generation of DDMs in ground processing with <<1% duty cycle

DDMs measured by GNSS-R instrument (nearly identical to CYGNSS DDMI science payload) deployed on TDS-1 mission (launch 2014). Ground truth co-location and intercomparison analysis in progress

Firmware-based generation of DDMs in real time with 100% duty cycle

TechDemoSat; Orbital Test Flight

Launch 8 July 2014; GNSS-R Demo Sep 2014

Observatory Separation from Deployment Module

CYGNSS Specular Point Contacts and Spatial Sampling

CYGNSS Earth Coverage

- 90 min (one orbit) coverage showing all specular reflection contacts by each of 8 s/c
- 24 hr coverage provides nearly gap free spatial sampling within +/- 35 deg orbit inclination

CYGNSS Historical Storm Track Overlay

Nature Run Life Cycle Track, Min. Pressure, Peak Wind speed

CYGNSS Peak Hold Wind Retrieval for Full 13 Day Nature Run

True vs. Retrieved Winds for Storm Center Transects

True v. L2 Retrieved Wind Speed

CYGNSS Measurement Performance

Science Objective	Scientific Measurement Estimated Performance		
	Parameter	Performance	
Measure ocean surface winds under TC conditions	"Operate through" Precip	< 100 mm/hr (25 km footprint)	
	Windspeed uncertainty	Greater of 2 m/s or 10% of windspeed	
	Spatial resolution	Variable 15-50 km (ground processing)	
	Windspeed dynamic range	< 70 m/s (Cat 5)	
Measure ocean surface winds in TC inner core with high temporal frequency	Revisit time	3 hr (median); 7 hr (mean)	
	Earth coverage	> 70% coverage of all historical TC storm tracks	

Science Data Products

Data Product	Description	First Data Delivery after IOC	Maximum data latency after first release
Level 0	Raw data of total system power (received signal + instrument noise)	2 Months	6 days
Level 1a	Calibrated DDMs of received power	2 months	6 days
Level 1b	Cal'd DDM of bistatic radar cross section	2 months	6 days
Level 2a	Spatially averaged windspeed (plus uncertainty) over a 25 x 25 km ² region centered at the specular point, geolocated, in spacecraft time & space coordinates	2 months	6 days
Level 2b	Spatially averaged mean square slopes (plus uncertainty) over a 25 x 25 km ² region centered at the specular point, geolocated, in spacecraft time & space coordinates	2 months	6 days
Level 3a	Wind speed, gridded in space and time (1/4° lat and long, 3 hours)	3 months	6 days
Level 3b	Wind speed, gridded and optimized for observing system experiment data assimilation (optimized spatial and temporal resolution)	3 months	6 days

CYGNSS Organizational Chart

Key Mission Elements (1/2)

Launch Vehicle: Government Furnished Pegasus XL

Key Mission Elements (2/2)

Ground Network -USN-

Mission Operations Center (MOC) -SwRI-

Science Operations Center (SOC)
-UM-

Deployment Module Overview

Operational Phase Sequencing

Engineering Models Reduce Flight Hardware Risk

- Engineering Model (EM) has completed initial AI&T efforts
 - Verified mechanical, electrical, and software performance and interfaces
 - Verified Ground Support Equipment (GSE) interfaces
 - Provided personnel training and procedure development
- Structural Thermal Model (STM) has completed low level vibration testing and thermal balance testing
 - Results from vibration testing and thermal vacuum testing used to calibrate Structural and Thermal analysis models
 - Demonstration of thermal and structural design and performance
- Radio Frequency Model (RFM) testing inside anechoic chamber completed
 - Accomplished performance characterization of the RF systems and validated the RF analytical models of the antenna performance
 - Used for both L-band and S-band system testing

Engineering Model in AI&T High Bay

STM in Thermal/Vacuum Chamber

Radio Frequency Model in Anechoic Chamber

Ground System Block Diagram

Project Schedule

Date	Milestone
Dec 2012	Project start
Jun 2013	System Requirements Defined
Jan 2014	Overall System Design Completed
Jan 2015	Detailed Design Completed
Mar 2015 – Jun 2016	Build, Assemble & Test the Spacecraft
Jul-Aug 2016	Integrate Spacecraft and Launch Vehicle
Oct 2016	LAUNCH
Oct 2016 – Mar 2017	Spacecraft commissioning, Science payload and algorithm calibration and validation
Oct 2016 – Sep 2018	On-orbit Mission Lifetime
After Sep 2018	Extended mission

Thank You

for more information visit http://cygnss-michigan.org

Or contact Chris Ruf, cruf@umich.edu

